

SBN Program Overview

Peter Wilson – SBN Program Coordinator Director's Progress Review of the SBN Program 15 December 2015

Outline

- Physics motivation
- Program requirements
- Scope of the SBN program
- Resources: funding sources
- Cost summary (DOE)
- Program schedule
- Summary

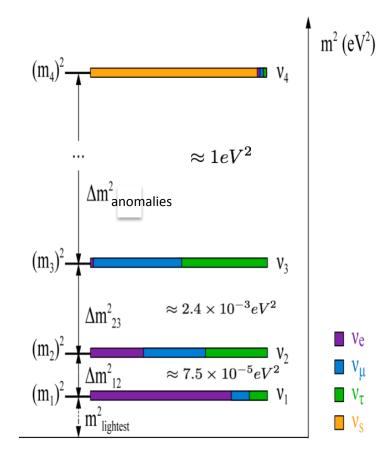
Program not a Project

What the SBN Program IS:

- A physics program: search for sterile neutrinos
- A staged campaign to install and operate Three LArTPC detectors
- A component of detector R&D headed toward DUNE
- Mixture of in-kind contributions from several European and American organizations

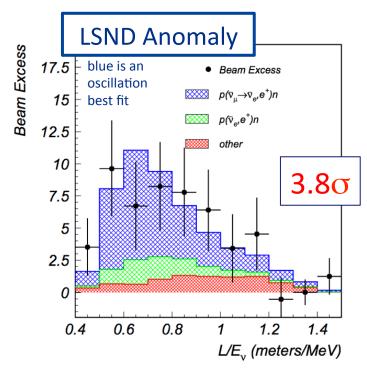
What the SBN Program IS NOT:

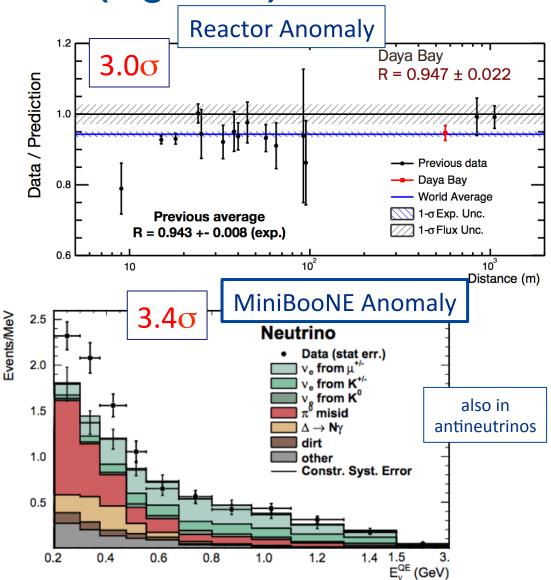
A DOE 413 Project



SBN Physics Program

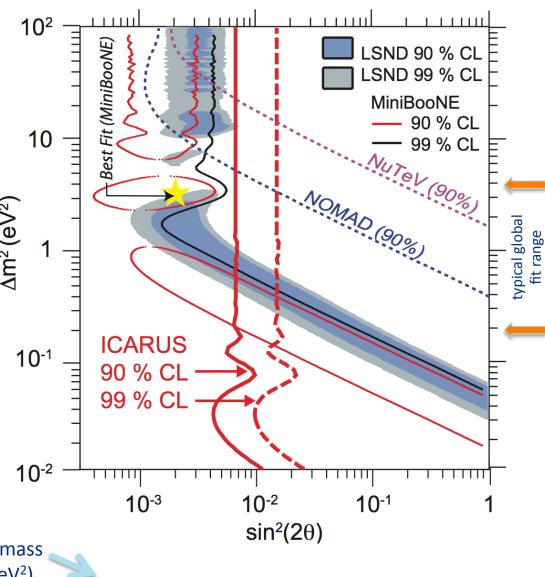
Physics Beyond the 3-v SM?


- In principle, oscillations can provide a window onto particle sectors not accessible through SM interactions
 - i.e. no strong, EM, or weak interactions
 - e.g. 'sterile' neutrinos
- Turns out anomalies are present in some existing data
 - While each of the measurements alone lack the significance to claim a discovery, together they could be hinting at important new physics
- The SBN program will contribute directly to this question either by making a significant discovery or by ruling out oscillations in a range hinted at by previous results


Very sensitive experiments are needed. Factor 10 smaller $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probabilities than for θ_{13} !

Some of the Existing SBL (high Δm^2) Anomalies

Are these results
evidence of
new physics or
caused by challenging
SM backgrounds?



Possible Sterile Neutrino Parameters

• Positive signals in $\nu_{\mu} \rightarrow \nu_{e}$ (and antineutrino) and ν_{e} disappearance (and antineutrino)

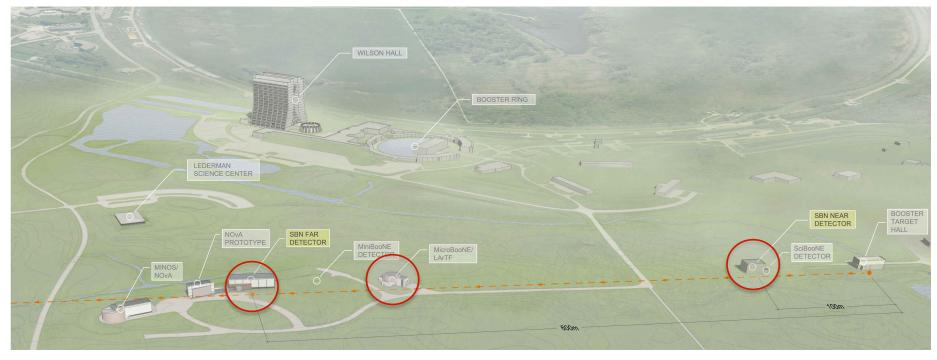
 Many global analyses that incorporate the positive and null results available

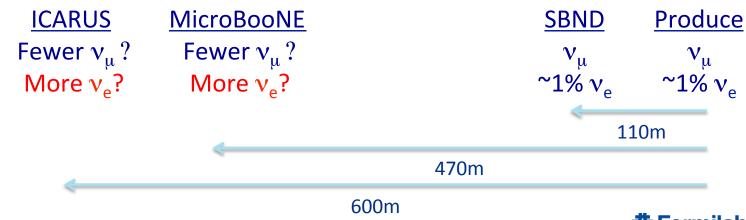
- Kopp et al.
- Conrad et al.
- Giunti et al.
 - others
 Recall the standard active neutrino mass splittings are down here (10⁻³ 10⁻⁵ eV²)

Brief History of Fermilab SBN Program

- 2003-13 1st gen. BNB experiments: MiniBooNE and SciBooNE
- 2015-18 2^{nd} gen. BNB experiment: MicroBooNE address the MiniBooNE low energy excess (e or γ) (SBN Phase I)
- 2009-13 Proposals to address short-baseline anomalies using multiple LAr TPCs:
 - X ICARUS@CERN: no v beam at CERN
 - X LAr1@FNAL: rejected by PAC and P5 too expensive
- Jan. <u>2014</u> Two new proposals to Fermilab PAC for next phase at BNB:
 - P-1052: ICARUS@FNAL: Updated ICARUS-T600 detector plus new T150 as near detector on the BNB for oscillation searches.
 - P-1053: LAr1-ND*: LAr1-ND + MicroBooNE (possibly followed by 1kton scale far detector).
- 2014 Proponents of ICARUS, LAr1-ND, and MicroBooNE, plus representatives from FNAL, INFN and CERN, work together to develop a coherent SBN physics program.
- * Name change in April 2015: LAr1-ND → Short-Baseline Near Detector (SBND)

P5 Recommendations


Building for Discovery Strategic Plan for U.S. Particle Physics in the Global Context


Recommendation 12: In collaboration with international partners, develop a coherent short- and long-baseline neutrino program hosted at Fermilab.

Recommendation 15: Select and perform in the short term a set of small-scale short-baseline experiments that can conclusively address experimental hints of physics beyond the three-neutrino paradigm. Some of these experiments should use liquid argon to advance the technology and build the international community for LBNF at Fermilab.

SBN Program – Three detectors

The SBN Proposal

Returned to the January <u>2015</u> PAC meeting with an updated proposal:

A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

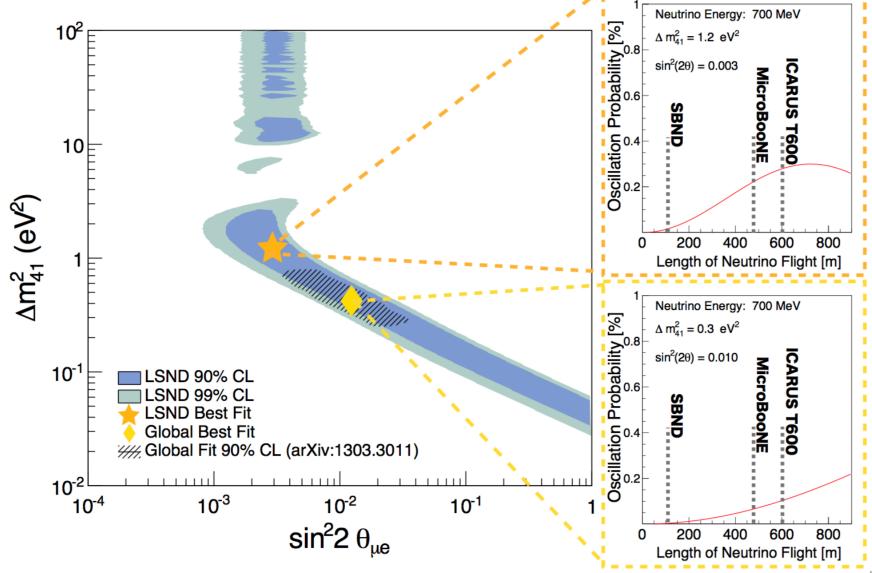
Submitted jointly by ICARUS, MicroBooNE and SBND (LAr1-ND) http://arxiv.org/abs/1503.01520

Part I: SBN Physics Program

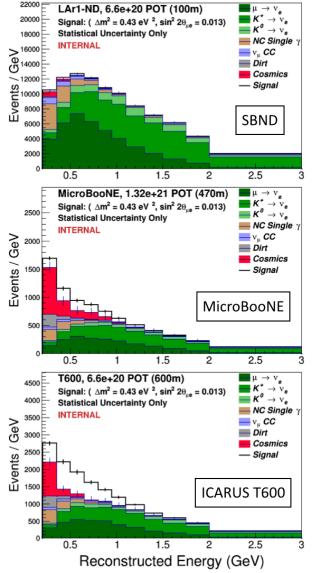
Part II: Near Detector Conceptual Design

Part III: T600 Design and Refurbishing

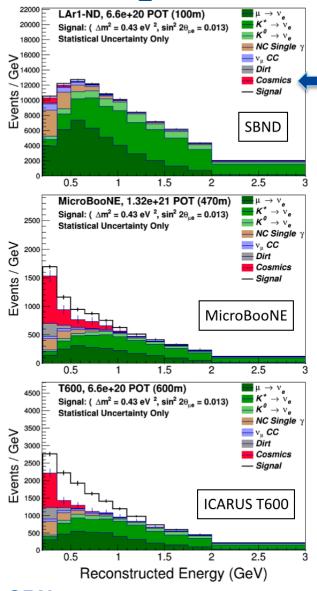
Part IV: Infrastructure and Civil Construction


Part V: Booster Neutrino Beam

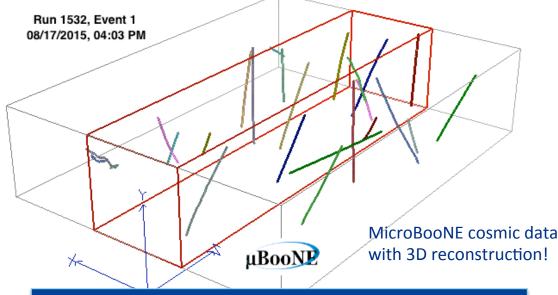
Part VI: Coordination and Schedule


Program
Conceptual
Design Report

Sample 3+1 Oscillation Signals in SBN


Backgrounds & Oscillation Signals in SBN

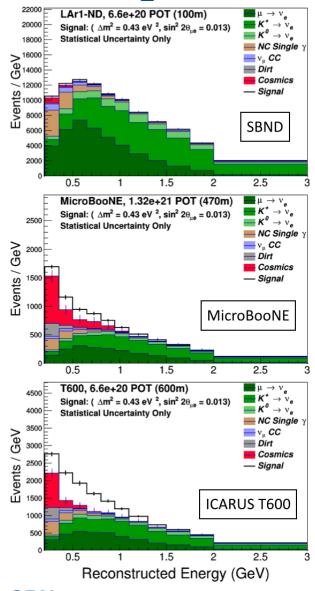
Electron neutrino CC interactions


- Sample appearance signal
- Photon-induced e.m. shower backgrounds
 - NC misIDs
 - $-v_{\mu}$ CC misIDs
 - "Dirt" Backgrounds: beam-related but out-of-detector interactions
 - Cosmogenic photon sources

Cosmogenic Backgrounds

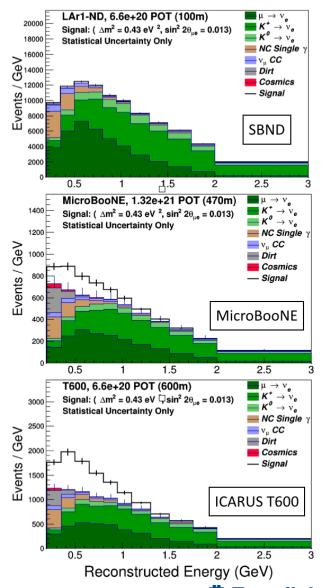
 The problem: 1000x longer charge drift time than the beam spill time!

1.6 us beam spill vs. 1-2 ms TPC drift time



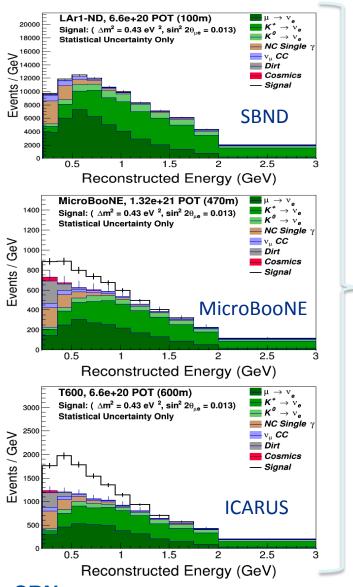
Detector	Neutrino interaction every N spills	Cosmic muon in beam spill time every N spills
SBND	20	250
MicroBooNE	600	200
ICARUS-T300	350	100

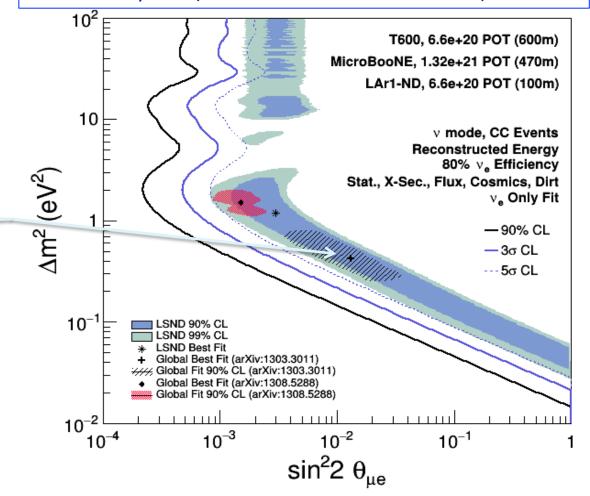
SBN



Cosmogenic Backgrounds

External cosmic ray
tracker (CRT) systems
can be employed to
identify
contaminated beam
spills


Off-beam triggers can be used to measure cosmic backgrounds to high precision – so negligible systematic uncertainties



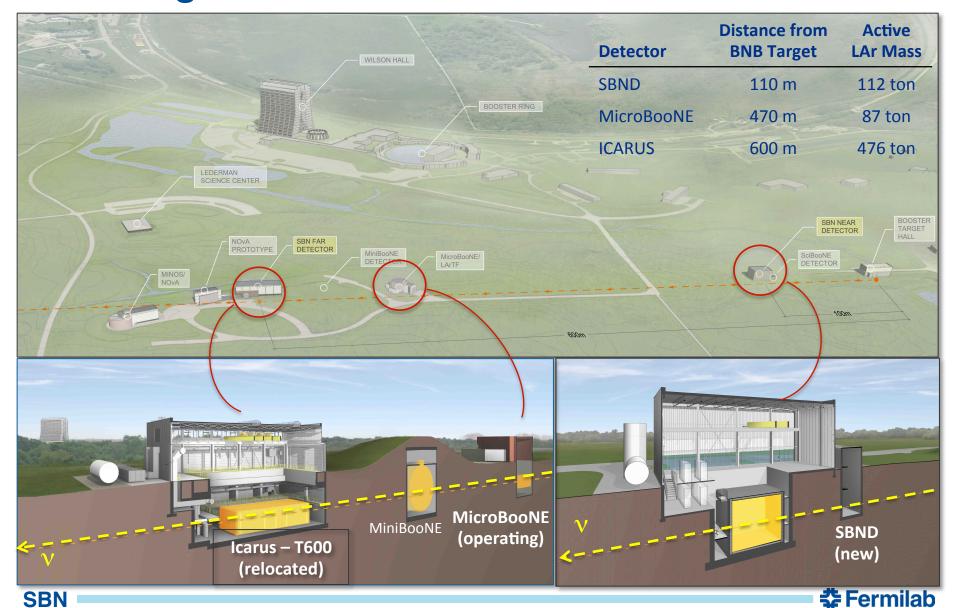
SBN v_e Appearance Sensitivity

~5 σ coverage of LSND 99% CL Region for 6.6x10²⁰ P.O.T. ~ 3 years (13.2x10²⁰ for MicroBooNE)

SBN Science Goals

- Directly follow up on the <u>MiniBooNE neutrino anomaly</u> by utilizing the LArTPC technology to determine the composition of the observed excess as electrons or photons (<u>MicroBooNE during Phase I</u>)
- Apply the advantages of the LArTPC technology and multiple detectors at different baselines to the question of high-Δm² sterile neutrino oscillations for the first time, testing current allowed oscillation parameters at ≥5σ (Phase II)
- Study v-Argon interaction physics using millions of events from both the Booster and Main Injector neutrino beams at Fermilab
- Further <u>develop the LArTPC technology</u> toward the aim of applying it at very large scales for long-baseline physics in DUNE

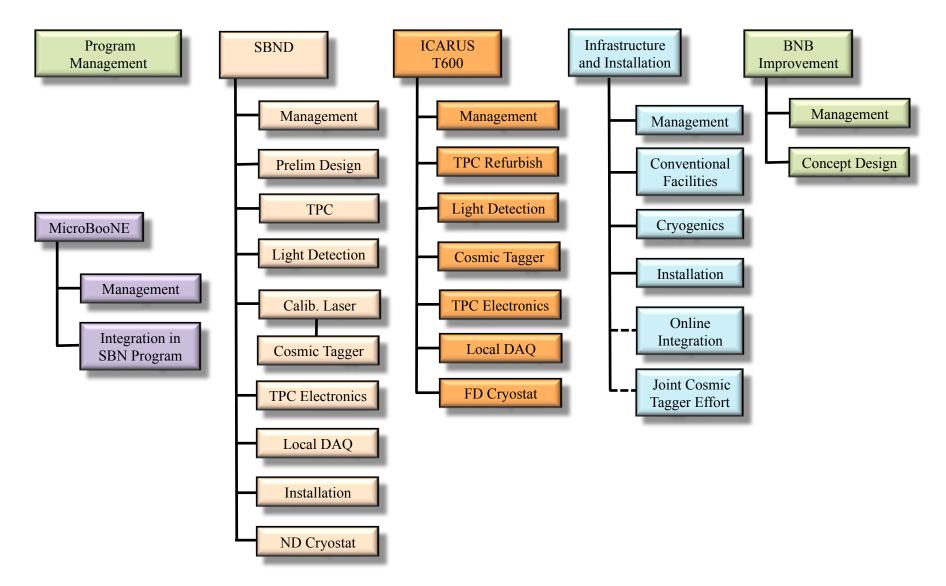
SBN Program Scope



Program Requirements and Assumptions

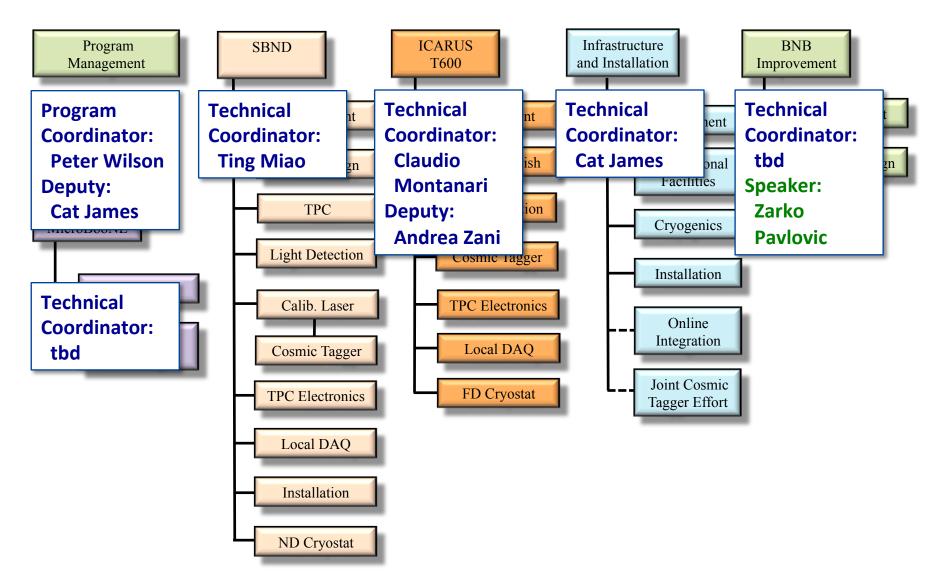
- Multiple LAr TPCs at different baselines
 - Flux systematics
 - Detector systematics
- Large far detector (~ 500t fiducial mass)
 - Statistics limited by far detector mass x neutrino flux x time
 - Program priority: earliest possible far detector operations
- Large integrated neutrino flux (> 13.2x10²⁰ P.O.T. equivalent)
 - Statistics limited by far detector mass x neutrino flux x time
 - Implies 3+ years of beam
- Detector overburden and cosmics identification
 - Reject large cosmic background in TPC drift time

SBN Program – Three detectors

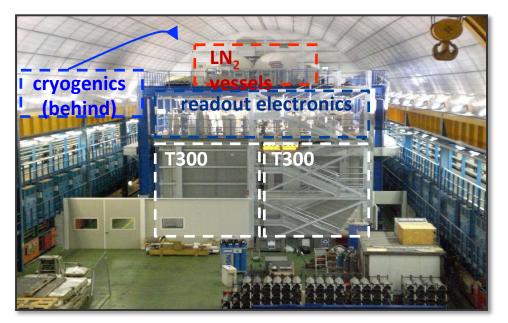


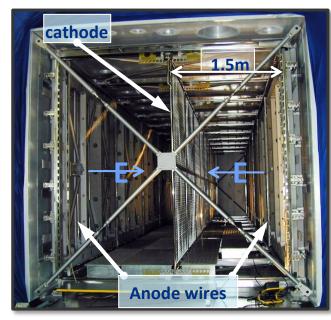
Scope of SBN Program Phases

Phase 1 (2015-18)	Included in this Review
Run 1 operations and physics of MicroBooNE	No
Design, construct, and install buildings and infrastructure	Yes
Refurbish, transport, and install ICARUS-T600	Yes
Design, construct, and install new ICARUS components	Yes
Design, construct, and install SBND	Yes
Upgrade Booster Neutrino Beam	Yes
Develop software and analysis tools	No
Phase 2 (2017-on)	
Fill and cold commission ICARUS	No
Fill and cold commission SBND	No
Operate three detectors	No
Physics analysis with three detectors	No

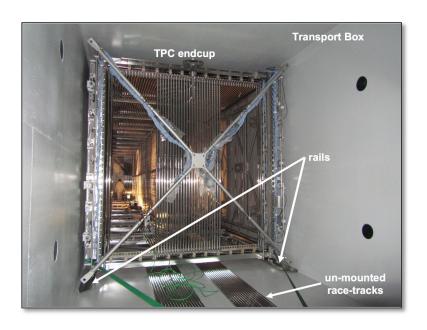


SBN Work Breakdown




SBN Work Breakdown

ICARUS-T600 at Gran Sasso

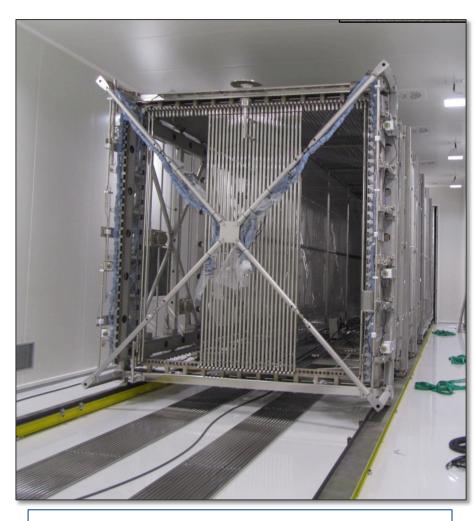


- Two identical modules (T300):
 - 3.6x3.9x19.6m³ each
 - LAr active mass: ~476 t
 - Drift length = 1.5 m (1 ms)
 - Very high LAr purity achieved $(\tau_{ele} \sim 15 ms)$

- Two TPCs per module
 - 3 readout wire planes at 0, ±60°
 - ~ 54000 wires, 3 mm pitch and plane spacing
 - Charge measurement on collection plane
- PMTs for scint. light detection
 - 8" tubes (20 in one module, 54 on other)
 - VUV sensitive (128nm) with TPB wavelength shifter coating

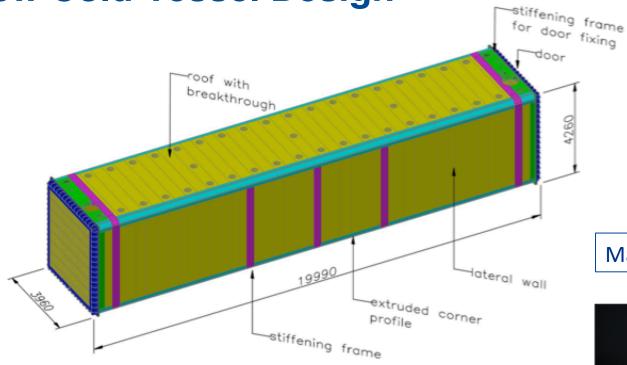
ICARUS T600 Transport to CERN

Move to CERN completed December 2014

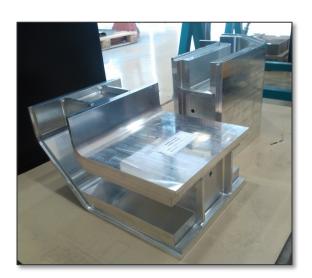


Scope of ICARUS Work at CERN (WA104)

- TPC refurbishing in progress:
 - New cryostats
 - Flatten cathodes
 - Replace internal TPC cabling
 - New HV decoupling boards
 - New 8" PMTs (90 per wire plane)
 - Upgrade TPC readout electronics
- Rebuild cryogenic system
- In planning stage (some may be DOE scope):
 - Cosmic Ray Tagger system
 - DAQ System


Details in talk by Claudio Montanari and Detector Breakout Session

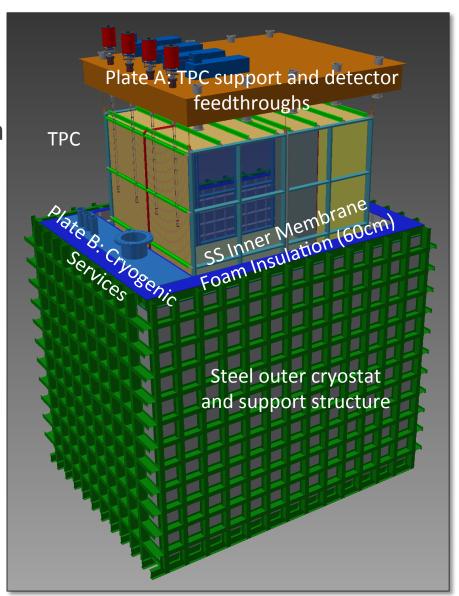
First TPC Module in CERN Cleanroom


New Cold Vessel Design

Machined U-frame Corner

- Custom Al extrusions welded into panels at vendor
- U-frames assembled at CERN
- Final assembly at CERN

Details in talks by Claudio Montanari and Marzio Nessi (Infrastructure Breakout)



SBND Detector

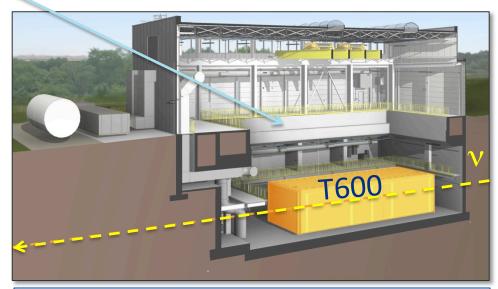
- Completely new detector incorporating experience from ICARUS, MicroBooNE, LBNE 35 ton
- Coordinate with DUNE on designs
- Scope of work:
 - TPC design and construction
 - PMT (8") system
 - Laser Calibration system
 - Cosmic Ray Tagger
 - Cold TPC readout electronics
 - DAQ (and electronics infra)
 - Membrane cryostat
 - Integration and Installation

Details in talks by Ting Miao and Detector breakout sessions

SBND TPC

- Joint design and construction project of UK-US univs
- Fabricate components in 2017
- Assemble and install at FNAL in 2017

Details in talks by Ting Miao and Kostas Mavrokoridis

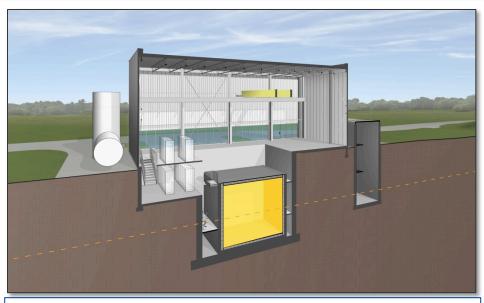


Far Detector Building

- Close cooperation between ICARUS, CERN and Fermilab on design requirements and review.
- Designed for 3m concrete overburden over detector to mitigate cosmogenic backgrounds for near surface operation
- Milestones:
 - ✓ Aug 2015 Start preliminary design
 - ✓ March 2015 Design complete
 - ✓ April 2015 Construction contract bidding
 - ✓ July 2015 Construction Start
 - ✓ Sept 2015 Excavation complete
 - Jan 2016 Concrete complete
 - June 2016 Building envelope complete
 - Oct 2016 Substantial completion

Details in talks by Cat James and Steve Dixon

Far Detector Building Progress


Near Detector Building

 Designed for 3m concrete overburden inside building to mitigate cosmogenic backgrounds for near surface operation

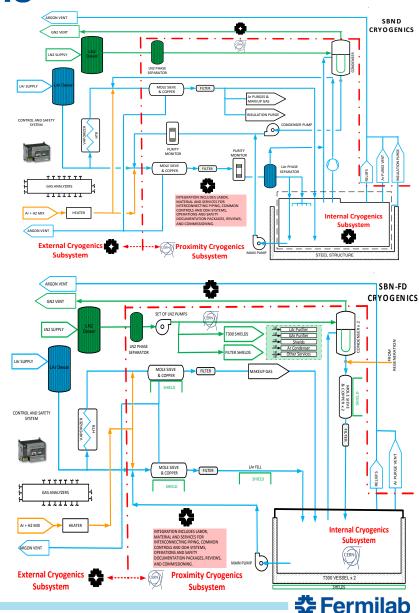
Milestones:

- ✓ Jan 2015 Design start
- ✓ May 2015 60% Design complete
- ✓ July 2015 Final design review
- ✓ Aug 2015 Design complete
- ✓ Oct 2015 Bidding complete
- Dec 2015 Notice to proceed
- Mar 2016 Construction start
- Nov 2016 Substantial completion

Details in talks by Cat James and Steve Dixon

Detector Overburden

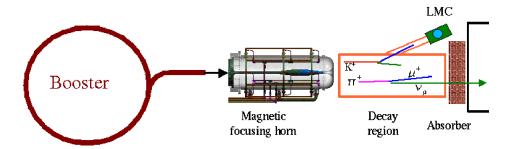
- Cosmic backgrounds in proposal assumed 3m of concrete overburden over both near and far detectors
 - Buildings designed to accommodate but not included in GPPs
- Scope for both detectors:
 - 40" thick (1.01m) of new bridging concrete blocks
 - 72" (1.78m) thick of recovered concrete shield blocks
 - Includes installation of blocks
 - Included in plan for DOE deliverables in FY18


Details in talks by Cat James and Jim Kilmer

Scope of Cryogenics Systems

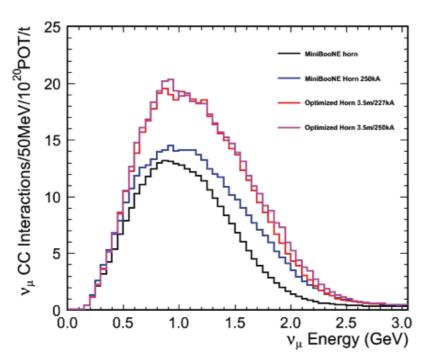
- Rebuild ICARUS cryogenic system
- New SBND cryogenic system
- Joint CERN-Fermilab responsibility
- Worked partitioning:
 - Internal : inside the cryostat
 - ICARUS CERN scope
 - SBND Fermilab scope
 - Proximity: Argon circulation & filtering
 - SBND & ICARUS CERN scope
 - External: Nitrogen & Argon delivery
 - SBND & ICARUS Fermilab scope
 - Controls Femilab scope

Details in talks by Cat James, Michael Geynisman and Barry Norris



Booster Neutrino Beamline Improvements

- The sterile v search is limited by far detector statistics
 - Detector mass x Neutrino flux x Time
 - Far detector is expensive (>\$10M for building alone)
- Increased v flux would further secure the program sensitivity
 - Higher v production efficiency
 - More protons on target (P.O.T.)



- LAr-TPCs more tolerant of high energy tail (distinguish NC π^0 background)
- Allows for reconsideration of target and horn design
- P.O.T. was limited to 5 Hz average
 - After PIP, Booster up to 15 Hz when NUMI beam (and Muon program) is off
 - Upgraded power supply would permit more opportunistic use of beam pulses

Booster Neutrino Beamline Improvements

- PreConceptual design work considered three options:
 - 1. Two horn system plus new PS (too expensive)
 - 2. Short, improved MiniBooNE-style horn + PS mods
 - 3. New horn, max. length (3.5m) + PS mods
- Focus on option 3:
 - Add 60-70% more neutrinos
 - Estimate cost about \$6M
- Request Accelerator Improvement Project (AIP) funds starting in FY17

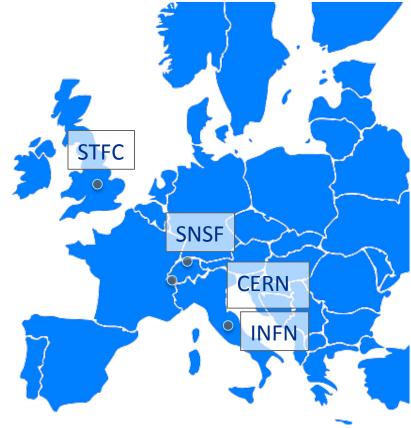
Details in talk by Zarko Pavlovic

Planning and Resources

SBN Institutions and Authors

Collaboration	Authors	Overla
ICARUS	~70	~6+8
SBND	112	~59
MicroBooNE	140 =	59
All SBN (excl overlaps)	~225	
CRN		

Institutions	SBN	SBN-DUNE Overlap
US	27	25
Non-US	28	24



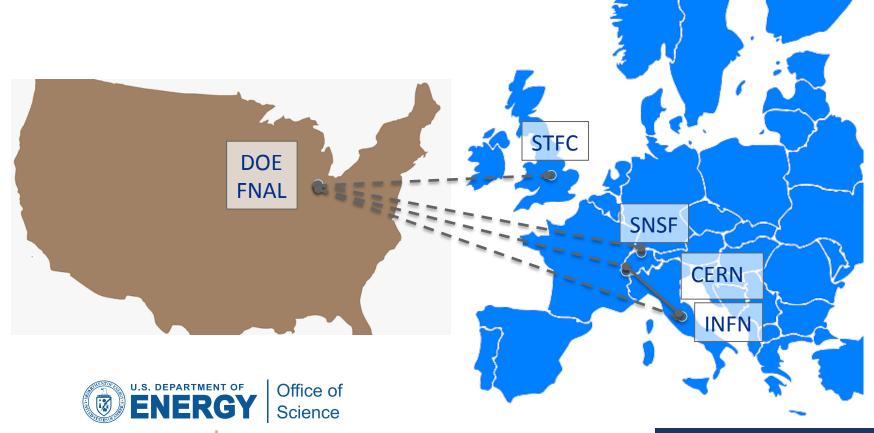
Primary SBN Funding Sources

SWISS NATIONAL SCIENCE FOUNDATION

ICARUS Funding Source Matrix

	INFN	CERN	DOE	NSF
Civil Construction			100%	
T600 Refurbishing including new PMTs, Cryostats (WA104)	50%	50%		
TPC Electronics	100%			
T600 Transport to FNAL	tbd	tbd		
Cryogenics		~50%	~50%	
Overburden			100%	
Cosmic Ray Tagger	25%*	25%*	tbd	?
DAQ	tbd	tbd	tbd	
Integration and Installation	tbd	tbd	tbd	

^{* - \$1.2}M CHF in WA104 agreement, estimate need at least 2 times this (core cost) tbd – expect contribution but fraction not determined ? – possible grant proposal



SBND Funding Source Matrix

	UK STFC	SNSF	LANL LDRD	CERN	DOE	NSF
Civil Construction					100%	
TPC Design and Fabrication	55%					45%
TPC Electronics					85%	15%
PMT System			100%			
Calibration Laser		100%				
Cryogenics				~50%	~50%	
Cryostat				~90%	~10%	
Overburden					100%	
Cosmic Ray Tagger			100%			
DAQ					100%	
Integration and Installation					100%	

Main International Agreements

SWISS NATIONAL SCIENCE FOUNDATION

ICARUS refurbishment at CERN (WA-104)

Addendum No. 02

to the
Memorandum of Understanding
for Collaboration in the Neutrino Program

WA104

Improving the ICARUS T600 Liquid Argon Time Projection Chamber (LAr TPC) in order to prepare for its operation at shallow neutrino depths.

The European Organization for Nuclear Research (CERN)

and

The INFN, on behalf of the WA104 Collaboration

endorse the Present Addendum to the Memorandum of Understanding with the indicated improvements of ICARUS T600 and with the related R&D on Liquid Argon Time Projection Chamber (LAr TPC).

for CERN

25/11/2014

The Director of Reasearch and Computing

Sergio Bertolucci

A CEST OF USON

For INFN, on behalf of INFN participating Institutes

The President

ISTITUTO NAZIONALE DI FISICA NUCLEARE

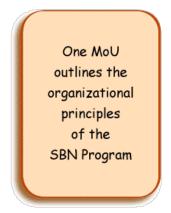
IL PRESIDENTE

(Prof. Fernando Ferroni)

Signature

Place and Date

SBN


s P

28 NOV.

Fermilab

SBN Collaboration MOU

Memorandum of Understanding

Addendum

Addenda to the MoU
outline agreements between
SBN institutions

Annex

Annexes to an
Addendum
hold more details.

WPA

Work Package Agreement

SoW

Statement of Work

TSW

Technical Scope of Work

Other supporting documents

- Draft MOU ready for review
- Drafts of first Addenda and Annexes ready for review
 - Bi-lateral covering design, construction and installation
 - Later: multilateral for operations and multilateral for physics
- Work Package Agreements drafted for cryogenics activities, SBND cryostat, several components of SBND
- Link to Sharepoint page:

DOE Cost Estimate

Program Schedule Development

- Integrated program schedule created using Microsoft Project
 - Maintained by SBN Program Office at Fermilab
- ICARUS-WA104 activities at milestone level (no resources)
- SBND activities detailed with resources relatively mature
 - Bottoms up from L2 managers
 - Includes in-kind contributions
- Infrastructure
 - Civil construction activities at milestone level
 - Cryogenics includes sharing of responsibilities with CERN New (Nov 2015)
 - Far detector integration as a Planning Package New (Nov 2015)
- Not yet included (plan still in development):
 - Cosmic Ray Tagger for ICARUS
 - Common Online Integration
- Keep separate schedule:
 - BNB improvements will make a separate schedule for AIPs

DOE Funding

- Building construction: General Plant Project (GPP) funds
- SBND design, construction and installation (incl cryogenics):
 - Detector R&D funds in a dedicated Budget & Reporting category
 - Managed by Neutrino Division
 - Budget FY15-18 (\$3M, \$3M, \$3M, \$1.5M)
 - Labeled: "R&D"
- ICARUS infrastructure design and installation support: (Also common activities such as management)
 - Detector operations funds fenced within Neutrino Division budget
 - Budget FY16-18 (\$2.9M/year)
 - Labeled "OPS"
- BNB Improvements requested:
 - Accelerator Improvement Project (AIP) Funds FY17-19 \$6.5M total

Note: All budgets and costs shown are fully burdened

Conventional Facilities – GPP Funds

	FY14	FY15	FY16	Total
Site Preparation		1500	695	2195
Near Detector Building		1700	3645	5345
Far Detector Building	1000	5298	3502	9800
Total GPP Budget				17340

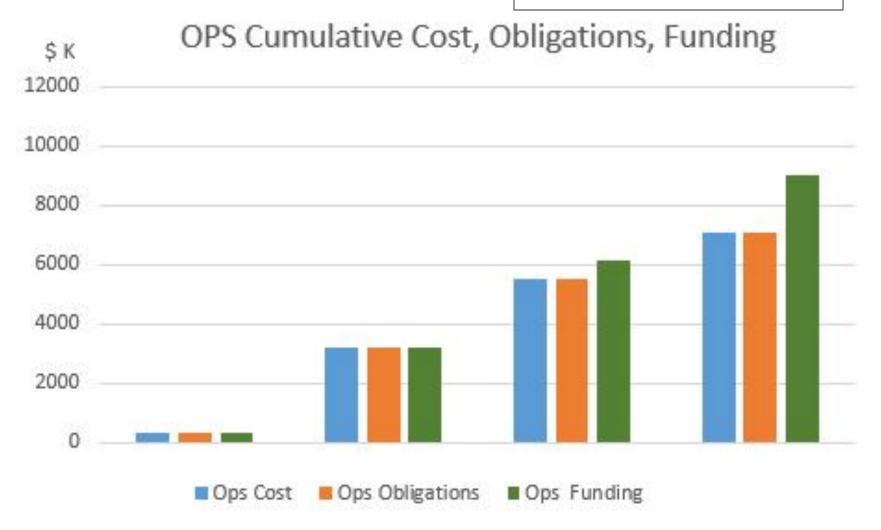
Budget covers:

- Engineering Design (EDIA)
- Construction Contract
- Management reserve

Managed by Fermilab Facilities Engineering Services Section (FESS)

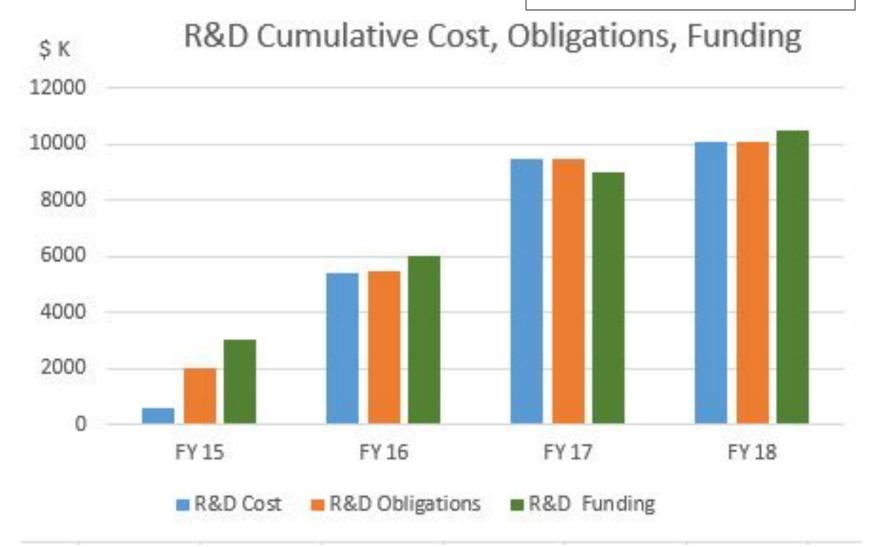
DOE Base Cost Estimate

Revised tables this week

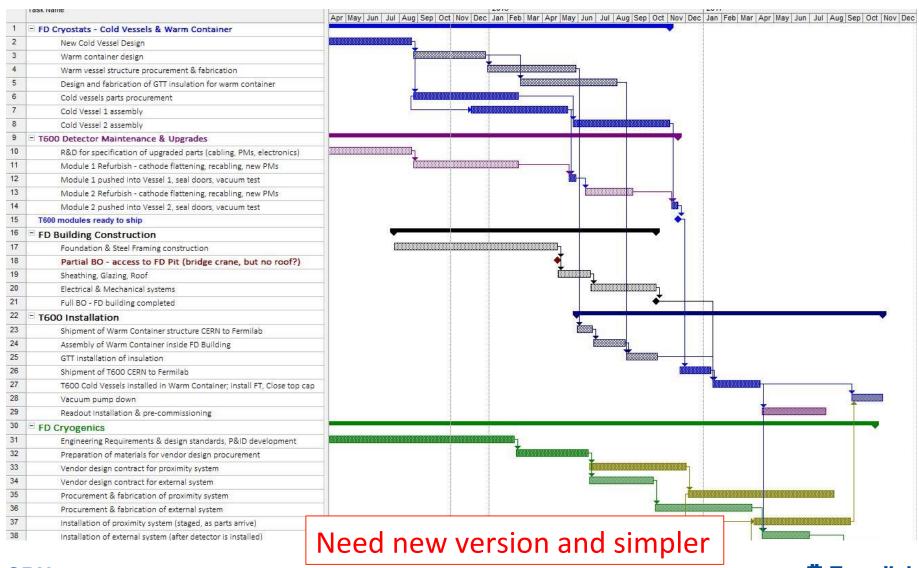

Each FY \$K	FY 15	FY 16	FY 17	FY 18
R&D Cost / Budget	591	4,811	4,095	575
R&D Obligations	1,988	3,459	4,051	575
R&D Funding	3,000	3,000	3,000	1,500
Ops Cost / Budget	315	2,861	2,355	1,525
Ops Obligations	315	2,861	2,355	1,525
Ops Funding	315	2,900	2,900	2,900
Cumulative \$K	FY 15	FY 16	FY 17	FY 18
R&D Cost	591	5,402	9,497	10,072
R&D Obligations	1988	5,447	9,498	10,073
R&D Funding	3000	6000	9000	10500
Ops Cost	315	3176	5531	7056
Ops Obligations	315	3176	5531	7056
obs opugations	313	3170	0001	,,,,,

Very little Management Reserve

DOE Cost (OPS)


Revised chart this week

DOE Cost (R&D)


Revised chart this week

Schedule

Far Detector Schedule

Near Detector Schedule

Need simple schedule figure

Program Coordination

SBN Program Office

- Support realization of the SBN detectors and infrastructure at Fermilab
 - Work with program Technical Coordinators
- Ensure that detectors and infrastructure are compliant with Fermilab/DOE ES&H standards
- Assist in quality assurance planning
- Plan and oversee DOE funded components of the program
- Consists primarily of members of the Fermilab Neutrino Division

Program Office Members:

Program Coordinator – *Peter Wilson*

Deputy Coordinator – *Catherine James*

Program Mechanical Engineers

SBND integration – *Joseph Howell (PPD)*

ICARUS integration – *Andy Stefanik*

Program Electrical Coordinator – *Linda Bagby*

Logistics Coordinator – *Michael Dinnon*

ES&H Coordinator – Angela Aparicio

CERN-INFN-Fermilab Safety Coordination:

Fermilab POC – Min Jeong Kim

CERN POC – Olga Beltramello (CERN-PH)

Project Controls - Richard Krull

Financial Officer – *Molly Anderson*

Administrative Support – Etta Johnson

ES&H and **QA**

- Discuss responsibilities of all partners
- Follow local ES&H of institution where work is done
- Equipment must satisfy FESHM and pass ORC process

Needs more detail

Coordination of Common Solutions

- SBN cryogenics will share designs where applicable
- SBND working with ICARUS on PMT-based photon detection system
 - Take advantage of experience and facilities set up at CERN
- Cosmic Ray Task force being started to address common needs
- SBN DUNE coordination:
 - SBND and DUNE actively planning common Cold Electronics design and testing plan
 - SBND pursuing light guide photon detection system as R&D toward DUNE
 - Started common DAQ hardware and software planning with DUNE (November workshop)

Summary

Status Summary

- Buildings progressing well: construction completion fall 2016
- ICARUS progressing well:
 - First T300 refurbishing will complete early 2016, second in mid-2016
 - Delivery of new PMTs started
 - Cryostat fabrication underway
 - New TPC electronics to fabrication contract early in 2016
- SBND designs nearing final stages
 - TPC in final design and preparing for fabrication
 - Redesigned cold ASICs nearing submission for fabrication
 - Cryostat nearly ready for contracts
 - Preliminary integration and installation plan completed

Status Summary (cont)

- Plan to address cosmic backgrounds still developing
 - Plan for overburden developed New in Nov 2015
 - SBND Cosmic Ray Tagger (CRT) design ready for final design review
 - Design for ICARUS CRT in development
 - Need additional funding (e.g. not in DOE budget)
 - Initiating Joint SBN Cosmics Task Force (ICARUS, MicroBooNE and SBND) to finalize requirements and designs
 Talk by Bob Wilson
- Plan for Online systems still developing
 - Capturing requirements for backend hardware and software
 - SNB-DUNE DAQ Workshop in November

Talk by Wes Ketchum

- Examining choices for hardware and software platforms
- ICARUS Integration and Installation Plan
 - New Fermilab Team: Scientist, Engineer, Designer Started Nov 2015

Talk by Andy Stefanik

Conclusions

- SBN Program is a staged campaign to install and operate multiple LArTPC detectors on the BNB to search for sterile neutrinos
- The program is managed as a combination of in-kind contributions and Fermilab managed DOE funded deliverables

Backup Slides

Three Collaborations → One Program

The ICARUS-WA104 Collaboration

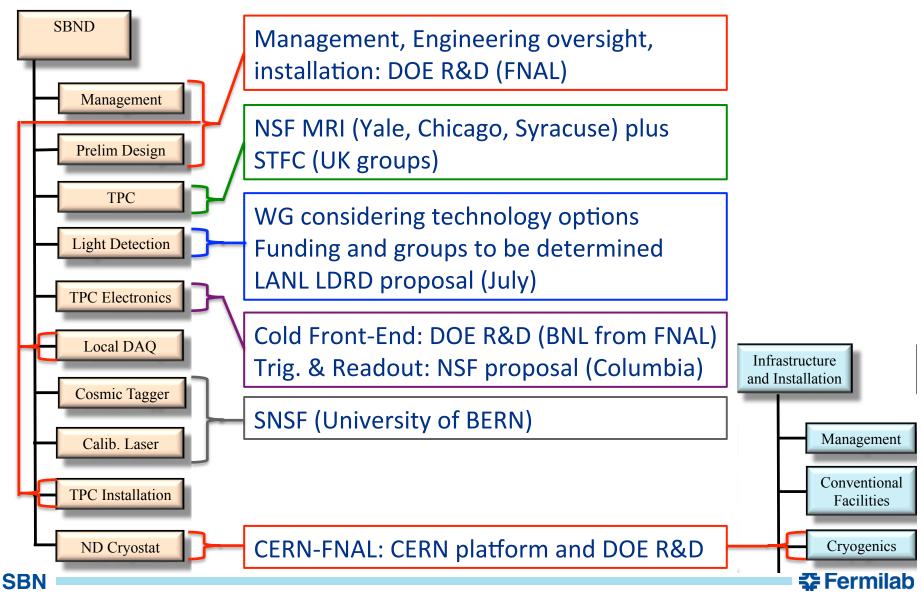
M. Antonello¹⁶, B. Baibussinov³¹, V. Bellini⁵, P. Benetti³², S. Bertolucci⁶, H. Bilokon¹⁵, F. Boffelli³², M. Bonesini¹⁷, J. Bremer⁶, E. Calligarich³², S. Centro³¹, A.G. Cocco¹⁹, A. Dermenev²⁰, A. Falcone³², C. Farnese³¹, A. Fava³¹, A. Ferrari⁶, D. Gibin³¹, S. Gninenko²⁰, N. Golubev²⁰, A. Guglielmi³¹, A. Ivashkin²⁰, M. Kirsanov²⁰, J. Kisiel³⁸, U. Kose⁶, F. Mammoliti⁵, G. Mannocchi¹⁵, A. Menegolli³², G. Meng³¹, D. Mladenov⁶, C. Montanari³², M. Nessi⁶, M. Nicoletto³¹, F. Noto⁶, P. Picchi¹⁵, F. Pietropaolo³¹, P.Płoński³², R. Potenza⁵, A. Rappoldi³², G. L. Raselli³², M. Rossella³², C. Rubbia^{*6,11,16}, P. Sala¹⁸, A. Scaramelli¹⁸, J. Sobczyk⁴⁴, M. Spanu³², D. Stefan¹⁸, R. Suley⁴³, C.M. Sutera⁵, M. Torti³², F. Tortorici⁵, F. Varanini³¹, S. Ventura³¹, C. Vignoli¹⁶, T. Wachala¹², and A. Zani³²

The LAr1-ND Collaboration

C. Adams⁴⁵, C. Andreopoulos²³, A. Ankowski⁴¹, J. Asaadi⁴⁰, L. Bagby¹⁰, B. Baller¹⁰, N. Barros³³, M. Bass³⁰, S. Bertolucci⁶, M. Bishai³, A. Bitadze²⁵, J. Bremer⁶, L. Bugel²⁶, L. Camilleri⁹, F. Cavanna⁸, ¹⁰, H. Chen³, C. Chi⁹, E. Church¹⁰, D. Cianci⁷, G. Collin²⁶, J.M. Conrad²⁶, G. De Geronimo³, R. Dharmapalan¹, Z. Djurcic¹, A. Ereditato², J. Esquivel⁴⁰, J. Evans²⁵, B.T. Fleming⁴⁵, W.M. Foreman⁷, J. Freestone²⁵, T. Gamble³⁷, G. Garvey²⁴, V. Genty⁹, D. Göldi², H. Greenlee¹⁰, R. Guenette³⁰, A. Hackenburg⁴⁵, R. Hänni², J. Ho⁷, J. Howell¹⁰, C. James¹⁰, C.M. Jen⁴¹, B.J.P. Jones²⁶, L.M. Kalousis⁴¹, G. Karagiorgi²⁵, W. Ketchum²⁴, J. Klein³³, J. Klinger³⁷, U. Kose⁶, I. Kreslo², V.A. Kudryavtsev³⁷, D. Lissauer³, P. Livesly²², W.C. Louis²⁴, M. Lu hi², C. Mariani⁴¹, K. Mavrokoridis²³, N. McCauley²³, N. McConkey³⁷, I. Mercer²², T. Miao¹⁰, G.B. Mills²⁴, D. Mladenov⁶, D. Montanari¹⁰, J. Moon²⁶, Z. Moss²⁶, S. Mufson¹⁴, M. Nessi⁶, B. Norris¹⁰, F. Noto⁶, J. Nowak²², S. Pal³⁷, O. Palamara^{*}, ^{5,10}, J. Pater²⁵, Z. Pavlovic¹⁰, J. Perkin³⁷, G. Pulliam⁴⁰, X. Qian³, L. Qiuguang²⁴, V. Radeka³, R. Rameika¹⁰, P.N. Ratoff²², M. Richardson³⁷, C. Rudolf von Rohr², D.W. Schmitz^{*,7}, M.H. Shaevitz⁹, B. Sippach⁹, M. Soderberg⁴⁰, S. Söldner-Rembold²⁵, J. Spitz²⁶, N. Spooner³⁷, T. Strauss², A.M. Szelc^{25,45}, C.E. Taylor²⁴, K. Terao⁹, M. Thiesse³⁷, L. Thompson³⁷, M. Thomson⁴, C. Thorn³, M. Toups²⁶, C. Touramanis²³, R.G. Van De Water²⁴, M. Weber², D. Whittington¹⁴, T. Wongjirad²⁶, B. Yu³, G.P. Zeller¹⁰, and J. Zennamo⁷

The MicroBooNE Collaboration

R. Acciarri¹⁰, C. Adams⁴⁵, R. An¹³, A. Ankowski⁴¹, J. Asaadi⁴⁰, L. Bagby¹⁰, B. Baller¹⁰, G. Barr³⁰, M. Bass³⁰, M. Bisha¹², A. Blake⁴, T. Bolton²¹, C. Bromberg²¬, L. Bugel²⁶, L. Camilleri⁰, D. Caratelli⁰, B. Carls¹⁰, F. Cavanna³¹⁰, H. Chen³, E. Church¹⁰, G.H. Collin²⁶, J.M. Conrad²⁶, M. Convery³⁰, S. Dytmam³⁴, B. Eberly³⁰, A. Ereditato², J. Esquivel⁴⁰, B.T. Fleming*⁴⁵, W.M. Foreman¬, V. Genty⁰, D. Göldi², S. Gollapinni²¹, M. Graham³⁰, E. Gramellini⁴⁵, H. Greenlee¹⁰, R. Grosso⁵, R. Guenette³⁰, A. Hackenburg⁴⁵, O. Hen²⁶, J. Hewes²⁵, J. Ho¬, G. Horton-Smith²¹, C. James¹⁰, C.M. Jen⁴¹, R.A. Johnson⁵, B.J.P. Jones²⁶, J. Joshi³, H. Jostlein¹⁰, D. Kaleko⁰, L. Kalousis⁴¹, G. Karagiorgi²⁵, W. Ketchum²⁴, B. Kirby³, M. Kirby¹⁰, T. Kobilarcik¹⁰, I. Kreslo², Y. Li³, B. Littlejohn¹³, D. Lissauer³, S. Lockwitz¹⁰, W.C. Louis²⁴, M. Lu□thi², B. Lundberg¹⁰, A. Marchionni¹⁰, C. Mariani⁴¹, J. Marshall⁴, K. McDonald³⁵, V. Meddage²¹, T. Miceli²³, G.B. Mills²⁴, J. Moon²⁶, M. Mooney³, M.H. Moulai²⁶, R. Murrells²⁵, D. Naples³⁴, P. Nienaber³⁶, O. Palamara⁵₁⁰, V. Papavassiliou²⁶, S. Pate²⁶, Z. Pavlovic¹⁰, S. Pordes¹⁰, G. Pulliam⁴⁰, X. Qian³, J.L. Raaf¹⁰, V. Radeka³, R. Rameika¹⁰, B. Rebel¹⁰, L. Rochester³⁰, C. Rudolf von Rohr², B. Russell⁴⁵, D.W. Schmitz¬, A. Schukraft¹⁰, W. Seligman⁰, M. Shaevitz⁰, M. Soderberg⁴⁰, J. Spitz²⁶, J. St. John⁵, T. Strauss², A.M. Szelc²⁵⁴⁵, N. Tagg²⁰, K. Terao⁰, M. Thomson⁴, C. Thorn³, M. Toups²⁶, Y. Tsai³⁰, T. Usher³⁰, R. Van de Water²⁴, M. Weber², S. Wolbers¹⁰, T. Wongjirad²⁶, K. Woodruff²⁶, M. Xu¹³, T. Yang¹⁰, B. Yu³, G.P. Zeller*¹⁰, J. Zennamo¬, and C. Zhang³


Additional Fermilab Contributors

W. Badgett¹⁰, K. Biery¹⁰, S. Brice¹⁰, S. Dixon¹⁰, M. Geynisman¹⁰, E. Snider¹⁰, and P. Wilson¹⁰

Collaboration spokespeopleFermilab SBN ProgramCoordinator

SBND Scope of Work and Funding

Content Slide [28pt Bold]

Bullet points are optional. If preferred, only first level bullets can be used or bullets can be set to "NONE." [24pt Regular]

- First level bullet [24pt Regular]
 - Second level bullet [22pt Regular]
 - Third level bullet [20pt Regular]
 - Fourth level bullet [18pt Regular]
 - Fifth level bullet [18pt Regular]

Comparison Slide [28pt Bold]

- First level bullet [24pt Reg]
 - Second level bullet [22p]t
 - Third level bullet [20pt]
 - Fourth level bullet [18pt]
 - Fifth level bullet [18pt]

- First level bullet [24pt Reg]
 - Second level bullet [22pt]
 - Third level bullet [20pt]
 - Fourth level bullet [18pt]
 - Fifth level bullet [18pt]

Click to add caption text [16pt Bold]

Click to add caption text [16pt Bold]

Content and Caption Slide [28pt Bold]

Click to add caption text [16pt Bold]

- First level bullet [24pt Reg]
 - Second level bullet [22pt]
 - Third level bullet [20pt]
 - Fourth level bullet [18pt]
 - Fifth level bullet [18pt]

Picture and Caption Slide [28pt Bold]

Click to add caption text [16pt Bold]

Collaborations / Partnerships / Members 28pt Bold

Logos shown are examples

